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The method of integral relations is used to solve an unsteady system of
equations of thermal explosion. With the help of this method several
problems of ignition theory are solved.

As is known [1], the first averaged equations of
thermal explosion were obtained, on the basis of phys-
ical considerations, by Todes. They were used later
in [2, 3]. Averaging of the starting equations of the un-
steady theory of thermal explosion was developed as a
mathematical technique in [4], where two methods of
averaging were given. In using the first of these it is
necessary, as a preliminary, to solve the nonlinear
boundary problem to determine §, and to make two
assumptions, while in using Khudyaev's method it is
necessary to solve the appropriate linear boundary
value problem and to make one assumption. This paper
uses the equations of the first approximation of the
method of integral relations [5, 6], whose solutions in
our case require only one assumption.

The unsteady system of equations of thermal ex-
plosion has the form
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The system (1), (2) is solved under the following ini-
tial and boundary conditions:

(X, Y, 2, 0)=0r ”'](X’ Y, 2, O):O’ @‘r=0 (3)

We shall assign the profile f(x,y,z, ®;) which satisfies
the boundary conditions (3), and, as far as possible,
correctly reflects the variation of ®(X,y,2, 7) in space.
The chosen profile must include the totality of prior
information about the behavior of ®(x,y, 2z, 7), which
we may obtain from physical reasoning, for example,
without recourse to the numerical solution of (1) and
(2) with conditions (3). The quantity @, = @y(7) in f(x,
¥, z, ®;) has everywhere below the meaning of maximum
temperature. Substituting f(x,y,z, ®;) into (1) and (2)
in place of ©(x,y,z, 7), and integrating the result over
the region G, we obtain a system of two nonlinear dif-
ferential equations of first order to determine @y(7)
and 7(r), in deriving which our sole assumption has
been
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Since as X, y, z, T varies,n varies in the narrow range
0 < n < 1, and considerably more slowly than exp i®/
A1 + BO)], it may be considered, according to [7], that

the assumption (4) does not give a large error. The
accuracy of the method may be increased if, following
{5, 6], we introduce in place of the single free param-
eter i parameters depending on 7 and integrate the
result with respect to i over the subregions of region
G. We then obtain 2i ordinary nonlinear differential
equations of first order for the 2i free parameters
and 7 = ﬁi(T), where 7j is the mean value of n over
the i-th subregion. With increase of the number of
subregions, the error of assumption (4) decreases,
and we may expect that the final results will be more
accurate, although the labor of the method increases
considerably. In examining examples we shall set
B = 0 to facilitate integration, i.e., we shall use the
Frank-Kamenetskii expansion [8] for exp (-E/RT).
However, if we take dimensionless temperature in the
form ® = RT/E, this expansion is not required.

We shall examine thermal explosion in an infinite
cylinder. In this case, owing to symmetry, the bound-
ary and initial conditions have the form

28
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The function f(x,y, z, @) in this case may conveniently
be taken to be

f=06—2In(l +ag). (6)

Substituting (8) into (1) and (2), multiplying both sides
of (2) by £, and integrating the result with respect to
£ from 0 to 1, we have the system of equations

do  a[¥g () (1 + a)* — 8a]

dr wi(l+an(ra—a
_diqu)(TT)(1+a) (7)
dt 2

with initial conditions
a(0) =0, n(0)=0. (8)

It may be assumed, a priori, that the system (7) is
more accurate than the system (5.1) of [4] for thermal
explosion in a cylinder, since the spatial features of
this problem are taken into account not only by the
structure of Eqs. (1) and (2), but also by the choice of
profile (6). For the zero-order reactiony = 0, and
there remains only the first of Egs. (7) with ¢(f) =1,
which may easily be integrated, yielding, as a = =,
102265'(1+a)1n(1+a)——ada' )
a*[8(1 + a)* —8al
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If the induction period 7 is finite, explosion of the
reacting system occurs. Therefore, in this substi-
tution the problem of thermal explosion in a cylinder
reduces to the problem of the stability, in Lagrange's
sense [9], of the solution of the first equation of (7)
with ¢ (7) = 1. The quantity 7, tends to «, or does not
exist at all, if the denominator of the integrand in (9)
vanishes, i.e., if 6 = 8a/(1 + @)%, The limiting value
& = 6% at which the denominator again vanishes is
reached for a4 =1, and is equal to 2, Therefore, with
6 > 2 we have 1, < » and explosion occurs, while for
5 < 2 there is no explosion. The value 84 = 2 agrees
with the corresponding exact value obtained in {8] with
the aid of the steady theory of thermal explosion.
Transforming (9), we have for the induction period the
formula
1
=28 { (I +x)In(l+x)—x+

[
+£2{(! —i—x)l‘n(l +x ) —1}1x
X [k2{8(1 + %)% — 8x )]~ }dx. (10)

The values of 75, T¢y, Tyy for various values of &
are shown below:

3 2.2 2.4 2,6 2.8 3 3.5,

T 3.288 2,282 1,865 1.631 1.483 1.302,
Tox 3.774 2.701 2,221 1,945 1.769 1.512,
To2 4.419 3.159 2.572 2.272 2.062 1.758.

it follows from this that we expect also that the value
of 7y is more accurate than the value of 7, satisfying
the averaged system (5.1) of [4], while the accuracy of
To (which is particularly important) is the greater, the
closer 6 is to 2.

In the case of a plate it is convenient to take

[ =6, — 2Inchsx (11)

as f(x,y, z, ®). Using (11), we may obtain by analogous
considerations the value 6x = 0.88, which agrees with
the exact value found in [8]. The chief difficulty inusing
the method of integral relations lies in integration of
Egs. (1) and (2), following the substitution in them of
fx,y,2,®,). However, if we use the Grey and Harper
[3] approximation,

expO =14 0.720 + 67, (12)

this difficulty drops out. For example, it is easy,
using (12), to solve the problem of thermal explosion
in a parallelepiped. As f(X,y,2, &) we take

f=06p(1—x})(1—y*p~?) (1 —2%~7). (13)

The characteristic dimension here is equal to half

the length of the smallest side. -Because of the sym-
metry of the problem in question we integrate not over
the whole region G, but over the part 0 = x =<1, 0 =
=y=p, 0=z = qg. Substituting (13) into (1) and (2),
using (12), and integrating the result over the above
part of region G, we obtain

30,d
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T
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with the conditions
8,(0) =0, 7(0)=0. (15)

For the zero-order reaction there remains the first
of Egs. (14), which is easily integrated, and for the
induction period we obtain the expression

28 (= 0.7256 — 34
<0 _fr P piddciadl I (16)
©TVhA 2 arcte VA )

From the condition A = 0 we easily find the limiting
value,

8y = 0.896 (1 + p=2 + g2, an

Expression (17) may also be obtained in the same way
in which 64 = 2 was found for the infinite cylinder.
For 6 < 6« the integral determining 7, does not exist
as an improper integral, but we may find its Cauchy
principal value [9],

8 in 3d—1 -A —0.728 '
vV —A  3d+V —A-—072

From (18) we obtain 7y < 0, which is physically
unreal. Thus, for 6 > 6x, 0 < 7y < = and explosion
occurs, while for é < 64 it does not. From (17), with
p=9=1we find éx = 2.69; withp =1, q — « we have
for a cylinder with a square base 84 = 1.79; for a plate
with p — o, q — « we have 6+ = 0.896. The exact value
of &x for a cube is 2.53 [11]. When 4 is little different
from 6x, formula (16) for 7, gives fair results, but
with & > 6x it gives greatly overestimated values of
Tp, in view of the fact that in its derivation we reduced
considerably the source function exp ©, For example,
for a plate with é = 0.968 7; = 4.83, and with 6 =1.32
To = 3.85, while the accurate results, found with the
aid of [4], are equal to 4.14 and 2.06, respectively.

We shall examine the problem of thermal explosion
in an infinite cylinder with an arbitrary time of de-
pendence of the cylinder wall temperature. A similar
problem with linear growth with time of the external
temperature was examined on the basis of the quasi-
steady theory of thermal explosion in [12]. This is a
problem of special interest in connection with storage
of explosives. We shall assume that a zero-order
reaction occurs. In this case we have only the single
equation (1) with ¢(7) = 1, along with the conditions

90
3% ko

(18)

Top =

=0, O(l, 1) =ap(ks), O, 0)=0.  (19)

With the aid of the substitution w = ® — ay k) we
obtain the equation

1 9 ( %
at 8 ag(
Fap kD] — xky (k) (20)

with homogeneous boundary and initial conditions, sim-
ilar to conditions (5). Substituting the profile (6) into
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(20) in place of w and integrating the result with re-
spect to £ from 0 to 1, we have the ordinary differ-
ential equation

92 ppg 4

a)lexplap (k)] —
dt

— Saky’ (k7)(14-a) —8a} X

K {26[(1 +a)In(l +a) —a] ) (21)

with the first of conditions (8). We shall examine the

case when ¥'(kt) >0 with 0 = 7= =,i.e., when ¥k} —

= o with 7 — «, We note that the curve defined by
the equation
E‘i .-: a*(1 4- a){ Sexp [a (k1)] — Sa k' (k1) —2) 22)
ds 2811 +a)n(l +a)—al ’

along with the first of conditions (8), lies below the
curve a(r) with 0 = 7 < =, according to [13], since
the right side of (21) is greater than the right side of
(22) for any value of 7. Equation (22) is easily in-
tegrated:

8 j. explay (kr)ldr=

0

‘In{l +a)—

a*(l + apf

2 da + 9t -+ Saap(k ). (23)
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It is easy to see that when a — «, Eq. (23) has the
solution T, < «, since when 7= 0 the right side of (23)
is greater than the left, but as 7 increases, the left
side of (23) increases faster than the right side, and
it is evident that the two curves intersect for Ty < =.
Since g(1) — » when 7 Tg < ©, it is easy to see that
a(r) — < when T — 7o < 7y, and therefore explosion
occurs for any values & > 0. Now let the external
temperature increase, as ayk7), until time 7 < 7y,
and remain constant at ayk7y) from time 7; on. On
the basis of the foregoing analysis it may be asserted
that when 0 < 7 < 74 explosion does not occur, and it
makes sense to study (21), beginning from time 71, to
which the value a; corresponds. In this case (21) is
integrated:

r=n—{—265 . (1+a)ln(l +a)—a da. 24)
a?{8(1 + aPexplap{kt)l —8a} -
ay

If @; < 1, then the limiting value 6 = 6x for which the
denominator of the integrand in (24) vanishes, is
reached with a4 = 1 and 6* = 2exp [~ay(kT)]. Thus
an explosion limit exists in this case, and explosion
occurs with & > 2exp[~opkT()].

We shall examine the problem of auto-ignition of
a viscous, incompressible reacting fluid moving in an
infinite cylindrical tube. A similar problem, with no
allowance for heat transfer and friction heat, was
solved previously in [14]. We shall assume that the
fluid flow follows the Poiseuille law, and that all the
thermophysical properties are constant. Mathemati-

391

cally, the problem reduces to solution of the system
of the following differential equations,

2,
(a“ Lﬂ)z__‘_?ﬂ, (25)
or® r or p 02
b (B OT LT Ot
0z, pe, \ or or? r or az?>
Qo (1 —w) { E )
At @Xp | —— |, 26
e P\ RT (26)
an & 1 dn , O&*n )
— =D
> (0r2+r o )
{1 —n)lkse _ £ 27
+ )" ko Xp( RT} (27)
with the boundary conditions
dv
O(rgy 21y =0, — =0, T(r, 0)=T,, T(r, x)=T,,
or r==0
Tire )= To, S| =0, n(r, 0) =0,
af r==0
n(r, ) =1, 91 = 0. (28)
Or |r=0, ro

The system of Egs. (25)—(27) with boundary con-
ditions (28) describes the regimes of auto-ignition
‘and combustion in the tube. If attention is restricted
to the auto-ignition regime, which may sometimes be
realized, according to [15], in rocket motors, the
original system may be appreciably simplified. In
this case, as is usual, we may neglect burnup of the
reacting substance right up to the time of ignition,
Then (27) may be omitted, and the system reduces to
(25) and (26). In addition, we neglect conductive heat
transfer along the tube in comparison with convective,
which is quite justified [14]. Equation (25) is easily
integrated, and gives the well-known Poiseuille profile
[16] for v, substitution of which into (26), and reduc-
tion of the result to dimensionless form using the
Frank-Kamenetskii transformation [18] for exp(~E/RT)
gives the equation

9 e 3
ot (E )+g§
—mxfﬁ_g(l—ﬁz)-é(—3¥+6§exp@:0 (29)

with the boundary conditions
8
9t [

By substituting profile (6) in (29) in place of ®, allow~
ing for the fact that then a = a(z), we have

O, 0), 81, 2, — ~0. (30)

da _ a®128(1 +ap + g (1 + a) — 16al 31)
dz 2mV6 [12(1 +aIn(l +a)—a(2 -+ 3a)

with an initial condition similar to (8). Equation (31)
is easily integrated, and for the dimensionless dis-
tance from the edge of the tube z = z; at which igni~
tion of the reacting mixture occurs, we obtain
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__w 2 — .
20 =mV§ s" 2(1 +aPln(l +a)—a(24 Sa)da. (32)

J @12 (1 +aP +g(1 -a)— l6a|
It is easy to see that the limiting value 6 = 6« is
reached with ax = (16 + g)/(16 — g) and, equally, 6x =
= (16 — g)?/128. Therefore, the higher the intensity

of dimensionless friction heat g, the lower the igni-
tion limit 6x. When g = 0 the limiting value coincides,
as might be expected, with the corresponding value

6% = 2 for thermal explosion in the cylinder. When

6 > 6% zg < © auto-ignition of the reacting mixture also
occurs, while when 6 = 6« it does not. It may be seen
from (32) that with increase of ¥, and therefore of m,
the quantity z, increases, since the influence of fric-
tion heat is relatively small.

The examples presented, while they do not exhaust
the whole scope of problems which may be solved with
the aid of the method of integral relations, do indicate
the effectiveness of this method for qualitative and
quantitative investigation of ignition theory problems.

NOTATION
E(T—T . . Ekyt
8- —(12—92 —dimensionless temperature; © = __Q__o_z_ exp <_ _E—)
RT; ey p RT; RT,

X 2

—dimensionless time; x= ——, gy L, A
Ty 7y Yo

; - . ey v RTG o
dimensionless coordinates; y = —F —a dimensionless parameter;

QEkyr?
LRT}

3= exp (-— £ ) —Frank-Kamenetskii criterion [8];

RT,
gl= E/RT,~relative activation energy; ¥=1, (1 — ), (1 - n)2 -
for the reaction of zeroth, first, and second order, respectively; I'~
boundary of region G in which the system (1), (2) is defined; 7—
mean value of 5 over region G; § = r/ry—dimensionless variable ra-
dius; T—absolute temperature in reaction vessel; Ty—temperature of
vessel walls; R—universal gas constant; E—activation energy; cy—
specific heat at constant volume; Q—thermal effect of reaction; p~
density; t—time; Ko —preexponent; ry—characteristic dimension; x;,
Y1» 21, r—dimensionless coordinates; A—thermal cox_lductivity; a=
= exp (@y/2) — 1; s= Arch exp (©/2) p= & /19, q = Is/1g—half
lengths of the second and third edges of parallelepiped, expressed as
a fraction of the characteristic dimension; d = 1 + p'2 + q'z; A=
= 6.39366° +4.325 d — 9d% T19 — induction period as found from form-
ula (4.1) of [4], withB=10, y =0, 8-> and n= 1; 1y — induction
period, as found from (4.1) of [4], with B=0, y=0andf, = 1; e = o4
E/RT3~dimensionless parameter; o, —a parameter with dimension °K
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k= RTEpklcV/quoexp(—E/RTO)—dimensionless parameter: ky—param-
eter with dimension sec™!; y—kinematic viscosity; w—thermal dif -
fusivity; v—longitudinal component of flow velocity; P—pressure;

¢, —specific heat at constant pressure; n—order of the reaction; g =

= 162 E/ pchTZO —dimensionless parameter describing the intensity

_ 9% A RT(:
of friction heat; v = Q/m} —mean flow velocity; m - — x
. QEk,

/

= vy
X exp ( RET ):| 2—climensionless parameter; Q—mass flow of the fluid
0/

per second; u—viscosity; D—diffusion coefficient.
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